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Abstract. Linear Programs (LPs) appear in a large number of applications. In this paper, we
propose a CUDA implementation for solving a large number of LPs simultaneously in GPU. We show
that our implementation has a maximum speed-up of 34.5× for a LP of dimension(200 variables,
200 constraints), running 5000 LPs simultaneously in parallel, when compared to sequential solving
using the open source GLPK (GNU Linear Programming Kit) library.

1 Introduction

The use of graphics processing units (GPUs) is becoming widespread in scientific applications for
accelerating performance. Some of these application domains include medical image processing[8],
weather research and forecasting (WRF) model [5], Proteomics (to speed-up peptide spectrum
matching [9]) and large scale graph processing [7]. The use of GPUs for general computing problems
other than graphics processing is referred to as General Purpose computing on GPUs (GPGPU).
A GPU has a massively parallel architecture consisting of thousands of cores designed for handling
multiple tasks simultaneously. NVIDIA provides a programming model called Compute Unified
Device Architecture (CUDA) to program GPUs. CUDA extends C/C++ and FORTRAN languages
with some special keywords and language primitives.

In this paper, we present a CUDA implementation to solve multiple LPs in parallel using the
simplex method[2] in a GPU. Our implementation can solve LP problems of dimension up-to 500×
500 (500 variables, 500 constraints). We show that beyond a sufficiently large number of LPs to
be solved, our implementation shows significant gain in performance compared to solving them
sequentially using the GLPK library, which is an open source LP solver.

To the best of our knowledge, prior work has shown parallel implementation of algorithms like
simplex and revised simplex to solve an LP in GPU but to solve a large number of LPs simultaneously
and efficiently is not addressed.

We refer the reader to an application which requires solving a large number of LPs simultaneous
in the area of reachability analysis in [6], which uses the GLPK library for solving multiple LPs of
smaller dimension simultaneously.

2 Related Work

A multi-GPU implementation of the simplex algorithm is reported in [4], which shows a speed-up of
2.93× for LP problem of dimension 1000× 1000 and an average speed-up of 12.7× for 8000× 8000
dimension or higher. A speed-up of 24.5× is shown when two GPUs are used together as compared to
a CPU. An implementation of the revised simplex method using in-built graphics library (OpenGL)
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is reported in [1]. The use of texture memory in the implementation limited LPs of dimension
2700 × 2700 with an average speed-up of 18×. The reported speed-up were for problems of size
600× 600 or above compared to the GLPK library. Almost all the works report speed-up for large
size LP problems (typically of dimension 500 × 500 or above) compared to the sequential CPU
implementations.

Rest of the paper is organized as follows. Section 3 describe the simplex method along with
our parallel implementation schemes of the simplex method in GPU. In Section 4, we present our
experimental results and conclude in 5.

3 Implementation of Simplex Method for Multiple LPs

A standard linear programming problem is maximizing an objective function with a given set of
constraints, represented as follows:

maximize
n∑

j=1

cjxj (1)

subject to the constraints

n∑
j=1

aijxj ≤ bi for i = 1, 2, ...,m (2)

and
xj ≥ 0 for j = 1, 2, ..., n (3)

In Expression (1) ,
∑n

j=1 cjxj is the objective function to be maximized and inequality (2) is the given
m constraints of n variables. The inequality (3) is the nonnegativity constraints over n variables.
A standard LP can be converted into a form, called slack form by introducing m additional slack
variables(xn+i) one for each inequality constraints as shown below:

xn+i = bi −
n∑

j=1

aijxj , for i = 1, ...,m (4)

along with the nonnegativity constraints xn+i ≥ 0, for i = 1, ...,m.
An algorithm that solves the LP problems efficiently in practice is the simplex method described

in [2]. The variables on the left-hand side of the equation (4) are referred to as basic variables
and those on the right-hand side are nonbasic variables. For some LPs, the initial basic solution
may not be feasible. For such LPs, the simplex method employs a two-phase algorithm. A new
auxiliary LP is formed by replacing with a new objective function z, which is the sum of the newly
introduced artificial variables. The simplex algorithm is employed on this auxiliary LP and
checks if the optimal solution to z is 0. If so, the original LP has a feasible solution and the simplex
method now initiates for Phase II. Therefore, LPs with infeasible initial basic solution takes more
time to be solved.

3.1 The Simplex Algorithm

The simplex algorithm is an iterative process of solving a LP problem. Each iteration tries to
increase the value of the objective function by replacing one of the basic variable (also know as the
leaving variable), by a nonbasic variable (called the entering variable). The exchange of these
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two variables is obtained by a pivot operation. The basic simplex algorithm consists of the following
main steps:

The algorithm first formulates a simplex tableau from the slack form using the coefficients of
the given LP. The tableau is of size (m+ 1)× n with m as the number of constraints and n as the
sum of the number of variables in the given LP, slack variables, artificial variables (provided if the
given LP has infeasible initial basic solution) along with three extra columns. The first of the three
columns of the table is used to store the coefficient of the basic variables, the second column is for
the values bi (the bounds of the constraints as in the inequality (2)), and finally the last column
stores the computed values, which is used to determine the pivot row in the algorithm. The last
row of the table is used to compute the value which is used to determine the pivot column in step
1 below.

Step 1: Determine the entering variable.
At each iteration the algorithm identifies a new entering variable (one of the column index of

the simplex table) which can improve the existing objective function into an optimal solution, in
the algorithm it is referred to as the pivot column.

Step 2: Determine the leaving variable.
Once the pivot column is determined the algorithm next identifies the row with the minimum

positive value (which is obtained by dividing the column bi by the corresponding pivot column) for
the leaving variable which is termed as the pivot row in the simplex algorithm.

Step 3: Obtain the new improved value of the objective function.
The algorithm then performs the pivot operation which updates the simplex tableau and obtains

new improved value for the objective function.
These steps are iterated until the halt condition has reached. The halt condition is met when

either the LP is found to be unbounded (i.e., no new leaving variable can be computed) or the
iterations has found the optimal solution (i.e., no new entering variable can be found).

3.2 Parallel Algorithm for Solving Multiple LPs Simultaneously

We present here our CUDA implementation that solves multiple LPs in parallel on GPU. The
simplex tableau described above is populated in the host(CPU) and then it is transferred to the
device(GPU). To speed-up populating the table, we use the OpenMP directives. For an efficient
kernel launch configuration and to achieve maximum GPU occupancy we map our problem into a
two dimensional block with each block ID used to solve an LP. Each block consists of j (≥ n, n
being the column size of the simplex table) threads, which is a multiple of 32, as instructions in
GPU are scheduled and executed as per warp basis where a warp is a collection of 32 threads. We
parallelized step 1 above by utilizing n (out of j)threads in parallel to determine the pivot column
using parallel reduction described in [3]. A parallel reduction is a technique applied to achieve
data parallelism in GPU when a single result is required to be generated out of a large number of
data. We also parallelized step 2 by using parallel reduction technique by using m (out of j)threads
in parallel to determine the pivot row. The pivot operation in step 3 involving only (m− 1) rows
also employed data parallelism by utilizing (m− 1)threads (out of j threads) in parallel to perform
the required pivot operation.

There are a number of approaches to compute the new entering variable, but so far there is
no general rule formulated which determines the superiority of one approach over other. In this
paper, we have presented only two approaches, to study the effect and the performance of these
approaches on different sizes of LPs, when solved simultaneously in parallel. We describe these
approaches below:
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• Most Negative Value (MNV): In this case, we take the minimum negative value computed
in the last row of the simplex table in the above algorithm, using parallel reduction technique.

• Random Negative Value(RNV): Instead of choosing the minimum negative value as in
MNV, here we choose a random negative value from the last row of the simplex table. Which
can also be parallelized by using n threads in parallel instead of using parallel reduction
technique.

(a) 50-Dimensionals (b) 100-Dimensionals

(c) 300-Dimensionals (d) 500-Dimensionals

Figure 1: showing time taken to compute number of LPs for dimension 50, 100, 300 and 500 respec-
tively for the class of LPs with initial basic solution as feasible .

5 Dimension 15 Dimension 50 Dimension 100 Dimension 200 Dimension

GLPK MNV GLPK MNV GLPK MNV GLPK MNV GLPK MNV

1 1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.33 0.01 0.00 4.11 0.06 0.01 7.54
50 1 0.00 0.00 1.00 0.03 0.00 15.67 0.10 0.01 10.81 0.80 0.03 26.50 3.36 0.11 31.15

100 1 0.00 0.00 2.00 0.06 0.00 19.78 0.18 0.02 12.22 1.50 0.05 28.12 6.90 0.21 33.03
500 10 0.01 0.01 1.90 0.32 0.01 26.69 0.92 0.07 12.29 7.78 0.25 30.57 33.79 1.04 32.36

1000 10 0.02 0.01 2.30 0.61 0.02 25.56 1.84 0.15 12.40 14.98 0.51 29.64 67.61 2.00 33.87
1500 10 0.04 0.01 2.50 0.91 0.04 25.69 2.39 0.22 10.89 22.64 0.75 30.02 101.41 2.99 33.90
2000 10 0.05 0.02 2.42 1.22 0.05 25.35 3.10 0.29 10.63 30.17 0.99 30.54 135.35 3.98 33.99
5000 10 0.12 0.04 2.62 3.04 0.12 25.44 7.73 0.70 10.98 75.44 2.46 30.62 344.68 9.98 34.54

10000 10 0.23 0.08 2.84 6.11 0.23 26.72 15.46 1.40 11.06 135.26 4.95 27.34 -- -- --
20000 10 0.46 0.17 2.79 12.53 0.43 29.11 30.78 2.79 11.02 -- -- -- -- -- --
50000 10 1.16 0.40 2.91 30.56 1.09 28.08 76.51 7.08 10.80 -- -- -- -- -- --

100000 10 2.35 0.79 2.97 60.90 2.14 28.46 -- -- -- -- -- -- -- -- --

No. Of 
Lps

No of 
Streams

GLPK 
Vs 

MNV

GLPK 
Vs 

MNV

GLPK 
Vs 

MNV

GLPK 
Vs 

MNV

GLPK 
Vs 

MNV

Table 1: showing comparison between GLPK and GPU implementation for the type of LPs with
initial basic solution as infeasible.
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4 Experiments

We performed our experiment in Intel Q9950, 2.84GHz, 4 Core (without hyper-threading), 8GB
RAM with GeForce GTX 670 GPU card for an average of 10 runs. We observed a maximum
speed-up of 5.5× using MNV and 2.5× using RNV approach respectively as compared to GLPK
for LP problems which has initial basic solution as feasible as show in figure 1. We observed that
for high dimensional LPs our CUDA implementation performs better even with few (e.g., 50) LPs
in parallel. But, for small size LPs, GPU out performs GLPK only after 100 and above LPs.

We gain a maximum speed-up of 34.5× using MNV approach compared to GLPK as shown in
table 1 for LP problems with infeasible initial basic solution.

5 Conclusions

We presented a parallel implementation to solve multiple LPs simultaneously in GPU. We have also
shown the performance gain with two proposed variations in choosing a pivot element in the simplex
algorithm. Overall, we have shown significant speed-up when large number of LPs are solved in
parallel in GPU compared to sequential solving in GLPK.

References

[1] Jakob Bieling, Patrick Peschlow, and Peter Martini. An efficient GPU implementation of the
revised simplex method. Proceedings of the 2010 IEEE International Symposium on Parallel
and Distributed Processing, Workshops and Phd Forum, IPDPSW 2010, 2010.

[2] GB Dantzig and MN Thapa. Linear programming 1: introduction. Springer Science & Business
Media, 2006.

[3] M Harris. Optimizing parallel reduction in CUDA. NVIDIA Developer Technology, 2007.

[4] Mohamed Esseghir Lalami, Didier El-Baz, and Vincent Boyer. Multi GPU implementation
of the simplex algorithm. Proc.- 2011 IEEE International Conference on HPCC 2011 - 2011
IEEE International Workshop on FTDCS 2011 -Workshops of the 2011 Int. Conf. on UIC 2011-
Workshops of the 2011 Int. Conf. ATC 2011, pages 179–186, 2011.

[5] John Michalakes and Manish Vachharajani. GPU Acceleration of Numerical Weather Prediction.
Parallel Processing Letter, pages 1–18, 2008.

[6] Rajarshi Ray and Amit Gurung. Poster : Parallel State Space Exploration of Linear Systems
with Inputs using XSpeed. In Proceedings of the 18th International Conference on Hybrid Sys-
tems: Computation and Control, pages 285–286. ACM, 2015.

[7] Koichi Shirahata, Hitoshi Sato, Toyotaro Suzumura, and Satoshi Matsuoka. A GPU Implemen-
tation of generalized graph processing algorithm GIM-V. Proceedings - 2012 IEEE International
Conference on Cluster Computing Workshops, Cluster Workshops 2012, pages 207–212, 2012.

[8] Guorui Yan, Jie Tian, Shouping Zhu, Yakang Dai, and Chenghu Qin. Fast cone-beam CT image
reconstruction using GPU hardware. Journal of X-Ray Science and Technology, 16(4):225–234,
2008.

[9] Jian Zhang, Ian McQuillan, and FangXiang Wu. Speed Improvements of Peptide - Spectrum
Matching Using SIMD Instructions. IEEE International Conference on Bioinformatics and
Biomedicine Workshops (BIBMW), pages 1–22, 2010.

5


